Guest Editorial

Special Section on Industrial Control

Industrial control addresses the use of sensors, metrology, and algorithms to monitor equipment, processes, products and to provide actionable information for maintenance and control. This Special Section of nine papers builds on and extends the contributions of the track on “Industrial Automation Systems and Controls” at the IEEE International Conference on Emerging Technology and Factory Automation (ETFA) held in Hamburg, Germany, 15–18 September 2008.

A. Applications

The successful application of industrial control draws from the domain expertise of multiple disciplines that are typically responsible for delivering separate elements of the complete solution such as IT/Factory Automation, Process Technology, Control Engineering, Yield Management, and Metrology. In this Special Section, industrial control application examples in manufacturing and chemical processing on annealing, refinery, semiconductor manufacturing, and debutanizer can be found in the following four papers respectively:

- Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares.
- Fault Detection Based on Statistical Multivariate Analysis and Microarray-Type Visualization.
- A Hybrid FLC-EKF Scheme for Temperature Control of a Refinery Debutanizer Column.

B. Industrial Informatics

Advances in computing, communication, and sensing systems provide us with an enormous amount of good quality information that was in the past unimaginable. One challenge now is to make use of industrial informatics technology to analyze, manipulate and distribute the information in the manufacturing process to improve product quality and yield – some issues in this area are addressed in the following five papers:

- Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares.
- Fault Detection Based on Statistical Multivariate Analysis and Microarray-Type Visualization.

- Bidirectional Branch and Bound for Controlled Variable Selection Part III: Local Average Loss Minimization.

C. Control Over Network

The rapid growth of communication networks provides several major opportunities and challenges for control. The decentralized nature of the control over network poses several problems. Stability is complicated by the presence of varying time delays, and the effect of a local control action can be felt over the network after substantial delay. Uncertainty and variation in the network, through network topology, transmission channel characteristics, traffic demand, available resources, and the like, may change constantly and unpredictably. The issue of time delay encountered in control over network is addressed in the following two papers:

- H-infinity State Feedback Control for a Class of Networked Cascaded Control Systems With Uncertain Delay.
- Design the Remote Control System with Time-Delay Estimator and the Adaptive Smith Predictor.

D. Concluding Remarks

As a concluding remark, industrial control must continue to embrace cutting-edge industrial informatics technology and open up new applications that can impact industrial control systems. Many people have contributed to the success of this Special Section and we would like to take this opportunity to thank them: authors of papers submitted for considerations, reviewers for their thoughtful reports which contributed significantly to the quality of this Special Section, and finally, Prof. Richard Zurawski, Editor-in-Chief, for his guidance in the preparation of this Special Section.

WENG KHUEN HO, Guest Editor
National University of Singapore
Department of Electrical and Computer Engineering
Singapore, 119077, Singapore
wk.ho@nus.edu.sg

S. JOE QIN, Guest Editor
University of Southern California
The Mork Family Department of Chemical Engineering and Materials Science
Ming Hsieh Department of Electrical Engineering
Daniel J. Epstein Department of Industrial and Systems Engineering
Los Angeles, CA 90089 USA
sqin@usc.edu

Digital Object Identifier 10.1109/TII.2009.2038616
Weng Khuen Ho (M’04) received the B.Eng. and Ph.D. degrees in electrical engineering from the National University of Singapore in 1987 and 1992, respectively.

He joined the Department of Electrical and Computer Engineering, National University of Singapore, in 1992, and is currently an Associate Professor and the Director of the Centre for Intelligent Control. His research interests include control and signal processing in semiconductor manufacturing and process control. He was a Visiting Scholar at Fisher–Rosemount (1993), Stanford University (1999–2001), and a Fellow at the Singapore Institute of Manufacturing Technology (2004–2005).

Prof. Khuen Ho received the 2003 Best Paper Award, IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING and the 2001, 2002, and 2003 Faculty of Engineering Teaching Award. He is an Associate Editor of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. He served full-time National Service in the Singapore Armed Forces as an infantry officer from 1979 to 1981 and in the army reserve from 1981 till now. His current rank is Captain.

S. Joe Qin received the B.S. and M.S. degrees in automatic control from Tsinghua University, Beijing, China, in 1984 and 1987, respectively, and the Ph.D. degree in chemical engineering from the University of Maryland, College Park, in 1992.

He is the Fluor Professor at the Viterbi School of Engineering, University of Southern California (USC) and Chang Jiang Professor affiliated with Tsinghua University by the Ministry of Education of China. Prior to joining USC, he held the Paul D. and Betty Robertson Meek and American Petrofina Foundation Centennial Professorship in Chemical Engineering at the University of Texas at Austin. He worked as a Principal Engineer at Fisher-Rosemount from 1992 to 1995. His research interests include statistical process monitoring and fault diagnosis, model predictive control, system identification, run-to-run control, semiconductor process control, and control performance monitoring. He is a Co-Director of the Texas–Wisconsin–California Control Consortium where he has been principal investigator for 14 years.

Dr. Qin is a recipient of the National Science Foundation CAREER Award, the DuPont Young Professor Award, the Halliburton/Brown and Root Young Faculty Excellence Award, the NSF-China Outstanding Young Investigator Award, and an IFAC Best Paper Prize for the model predictive control survey paper published in Control Engineering Practice. He is currently an Associate Editor for the Journal of Process Control and the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, and a Member of the Editorial Board for the Journal of Chemometrics. He served as an Editor for Control Engineering Practice and an Associate Editor for IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.